Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[lead(II)-bis(μ-2-amino-1,3-benzothiazole-6-carboxylato)]

Ke-Ke Zhang, Xin Fang, Hai-Yang Yu, Hua Ke and Jun-Dong Wang*
College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
Correspondence e-mail: wangjd@fzu.edu.cn

Received 28 October 2010; accepted 25 November 2010
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$;
R factor $=0.037 ; \omega R$ factor $=0.096 ;$ data-to-parameter ratio $=15.4$.

The title complex, $\left[\mathrm{Pb}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right)_{2}\right]_{n}$, consists of one $\mathrm{Pb}^{\mathrm{II}}$ ion located on a crystallographic twofold axis and two symmetryrelated 2-amino-1,3-benzothiazole-6-carboxylate (ABTC) ligands. The central $\mathrm{Pb}^{\mathrm{II}}$ ion has a $(4+2)$ coordination by four O atoms of the two ABTC ligands and two weaker $\mathrm{Pb}-\mathrm{S}$ bonding interactions ($\mathrm{Pb}-\mathrm{S}$ secondary bonds) from S atoms of other two neighbouring ABTC ligands. These bonds link the metal ions into zigzag chains along the c axis, which, in turn, aggregate through $\pi-\pi$ interactions [centroid-centroid distance $=3.7436 \AA$] between ABTC rings and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Related literature

For applications of benzothiazole and its derivatives, see: Petkova et al. (2000); Leng et al. (2001); Karlsson et al. (2003); Ćaleta et al. (2009); Tzanopoulou et al. (2010). For the use of benzothiazoles in building novel complexes, see: Vuoti et al. (2007); Zou et al. (2004); Ng et al. (2008); Chen et al. (2010); For our recent work on the design and synthesis of benzothiazole derivatives, see: Fang et al. (2010); Lei et al. (2010). For secondary $\mathrm{Pb}-\mathrm{S}$ bonds, see: Chan \& Rossi (1997); Turner et al. (2008). For van der Waals radii, see: Bondi (1964). For (4+2) coordination, see: Chan \& Rossi (1997); Calatayud et al. (2007); Turner et al. (2008); Pena-Hueso et al. (2008). For $\pi-\pi$ interactions, see: Sredojević et al. (2010). For the preparation of the 2-aminobenzothiazole-6-carboxylic acid ligand, see: Das et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data

$\left[\mathrm{Pb}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right)_{2}\right]$
$V=828.6$ (3) \AA^{3}
$M_{r}=593.59$
$Z=2$
Monoclinic, $P 2 / c$
$a=10.909$ (2) A
Mo $K \alpha$ radiation
$\mu=10.47 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$b=4.8271$ (10) \AA
$0.39 \times 0.29 \times 0.15 \mathrm{~mm}$
$c=15.980$ (3) A
$\beta=100.02$ (3) ${ }^{\circ}$

Data collection

Rigaku Saturn 724 CCD areadetector diffractometer
Absorption correction: numerical
(NUMABS; Higashi, 2000)
$T_{\text {min }}=0.378, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037 \quad 123$ parameters
$w R\left(F^{2}\right)=0.096 \quad \mathrm{H}$-atom parameters constrained
$S=1.11$
1890 reflections

6088 measured reflections 1890 independent reflections 1871 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.075$
$\Delta \rho_{\text {max }}=2.13 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-2.56 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.11	$2.973(7)$	179
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 2^{\mathrm{ii}}$	0.86	2.09	$2.934(7)$	168

Symmetry codes: (i) $x,-y-1, z-\frac{1}{2}$; (ii) $-x+2,-y-2,-z+1$.
Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97.

This work was supported by the Foundations of Fuzhou University (No.s XRC0924, 2010-XQ-06, 826682), the Fujian Institute of Research on the Structure of Matter (CAS) (No. SZD08003) and the NSFC (No. 30811130467).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2378).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Calatayud, D. G., Lopez-Torres, E. \& Mendiola, M. A. (2007). Inorg. Chem. 46, 10434-10443.
Ćaleta, I., Kralj, M., Marjanović, M., Bertoša, B., Tomić, S., Pavlović, G., Pavelić, K. \& Karminski-Zamola, G. (2009). J. Med. Chem. 52, 1744-1756. Chan, M. L. \& Rossi, M. (1997). Inorg. Chem. 36, 3609-3615.
Chen, S. C., Yu, R. M., Zhao, Z. G., Chen, S. M., Zhang, Q. S., Wu, X. Y., Wang, F. \& Lu, C. Z. (2010). Cryst. Growth Des. 10, 1155-1160.

Das, J., Lin, J., Moquin, R. V., Shen, Z., Spergel, S. H., Wityak, J., Doweyko, A. M., DeFex, H. F., Fang, Q., Pang, S., Pitt, S., Shen, D. R., Schieven, G. L. \& Barrish, J. C. (2003). Bioorg. Med. Chem. Lett. 13, 2145-2149.
Fang, X., Lei, C., Yu, H.-Y., Huang, M.-D. \& Wang, J.-D. (2010). Acta Cryst. E66, o1239-o1240.
Higashi, T. (2000). NUMABS. Rigaku Corporation, Tokyo, Japan.
Karlsson, H. J., Lincoln, P. \& Westman, G. (2003). Bioorg. Med. Chem. 11, 1035-1040.

Lei, C., Fang, X., Yu, H.-Y., Huang, M.-D. \& Wang, J.-D. (2010). Acta Cryst. E66, o914.
Leng, W. N., Zhou, Y. M., Xu, Q. H. \& Liu, J. Z. (2001). Polymer, 42, $9253-$ 9259.

McArdle, P. (1995). J. Appl. Cryst. 28, 65.
Ng, S. Y., Tan, J., Fan, W. Y., Leong, W. K., Goh, L. Y. \& Webster, R. D. (2008). Eur. J. Inorg. Chem. pp. 144-151.
Pena-Hueso, A., Esparza-Ruiz, A., Ramos-Garcia-, I., Flores-Parra, A. \& Contreras, R. (2008). J. Organomet. Chem. 693, 492-504.
Petkova, I., Nikolov, P. \& Dryanska, V. (2000). J. Photochem. Photobiol. A, 133, 21-25.
Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sredojević, D. N., Tomić, Z. D. \& Zarić, S. D. (2010). Cryst. Growth Des. 10, 3901-3908.
Turner, D. L., Vaid, T. P., Stephens, P. W., Stone, K. H., DiPasquale, A. G. \& Rheingold, A. L. (2008). J. Am. Chem. Soc. 130, 14-15.
Tzanopoulou, S., Sagnou, M., Paravatou-Petsotas, M., Gourni, E., Loudos, G., Xanthopoulos, S., Lafkas, D., Kiaris, H., Varvarigou, A., Pirmettis, I. C., Papadopoulos, M. \& Pelecanou, M. (2010). J. Med. Chem. 53, 4633-4641.
Vuoti, S., Haukka, M. \& Pursiainen, J. (2007). Acta Cryst. C63, m601-m603.
Zou, R. Q., Li, J. R., Xie, Y. B., Zhang, R. H. \& Bu, X. H. (2004). Cryst. Growth Des. 4, 79-84.

supplementary materials

Acta Cryst. (2010). E66, m1700-m1701 [doi:10.1107/S1600536810049330]
catena-Poly[lead(II)-bis(μ-2-amino-1,3-benzothiazole-6-carboxylato)]

K.-K. Zhang, X. Fang, H.-Y. Yu, H. Ke and J.-D. Wang

Comment

In recent years, benzothiazole and its derivatives have been attracting more attention because they exhibit interesting optical and biological activities, which made them widely used in many fields, such as fluorescent materials, nonlinear optical materials, pesticides, anti-tumor and anti-microbial drugs, etc. (Petkova et al., 2000; Leng et al., 2001; Karlsson et al., 2003; Ćaleta et al., 2009). Related structural studies are partly focused on the fact that the benzothiazole ring contains N, S and O as potential donor atoms, which exhibit good coordination capacity, and so are propitious to build novel complexes (Zou et al.,2004; Vuoti et al., 2007; Ng et al., 2008; Chen et al.,2010;). By reviewing their metal complexes (Cambridge Structural Datebase, Version of 5.31 of August 2010; Allen, 2002), it was found that most metal atoms only match with N atom of thiazole ring, but not the S atom (because the coordination capacity of S is much weaker than N), as long as these metal atoms have interaction with the thiazole ring. In our recent work, accompanied with the design and synthesis of benzothiazole derivatives (Lei et al., 2010; Fang et al., 2010), complexes of benzothiazole derivatives with metal atoms were composed and structurally analyzed to explore their coordination behaviors. In this paper, we report the structure of a coordination polymer of lead and 2-amino-1,3-benzothiazole-6-carboxylate ligand (ABTC), where the coordination mode of S with Pb is seen as a secondary $\mathrm{Pb}-\mathrm{S}$ bond (Chan et al., 1997; Turner et al., 2008).

The asymmetric unit of the complex contains a $\mathrm{Pb}^{\mathrm{II}}$ ion located on a two fold axis and one independent 2-amino-1,3-benzothiazole-6-carboxylate (ABTC) ligand (Figure 1). The central $\mathrm{Pb}^{\text {II }}$ ion is coordinated by four O atoms of two ABTC ligands in a pyramid fashion with the $\mathrm{Pb}^{\text {II }}$ ion at the apex, covalently bounded to the four O atoms making up the base of the pyramid. The four $\mathrm{Pb}-\mathrm{O}$ bonds are $\mathrm{Pb} 1-\mathrm{O} 1$ and $\mathrm{Pb} 1-\mathrm{O} 1^{\text {iii }}$, (iii): $-x+1,-y,-z+1$, with a distance of 2.395 (5) \AA, and $\mathrm{Pb} 1-\mathrm{O} 2$ and $\mathrm{Pb} 1-\mathrm{O} 2$ ii , (ii) $-x+1, y,-z+3 / 2$; with a distance of 2.366 (4) \AA. The stereochemistry of the distorted pyramid is described by angles of $\mathrm{O} 1-\mathrm{Pb}-\mathrm{O} 1^{i i i}, 106.4(3)^{\circ}$, and $\mathrm{O} 2-\mathrm{Pb}-\mathrm{O} 2^{\mathrm{iii}}, 102.8(3)^{\circ}$, and the sides of the base defined by $\mathrm{O} 1-\mathrm{O} 2$ and $\mathrm{O} 1^{\mathrm{iii}}-\mathrm{O} 2^{\mathrm{iii}}$, distanced 2.1708 (60) \AA, and $\mathrm{O} 1-\mathrm{O} 2^{\mathrm{iii}}$ and $\mathrm{O} 2-\mathrm{O} 1^{\mathrm{iii}}$, distanced 3.081 (7) \AA.

In the crystal, two S atoms also interacte with the apical $\mathrm{Pb}^{\mathrm{II}}$ ion with so-called secondary bonds, where the $\mathrm{Pb}-\mathrm{S}$ distance $\left[\mathrm{Pb} 1 — \mathrm{~S} 1^{\mathrm{i}}\right.$ ((i) $\left.x,-y, z+1 / 2\right)$ and $\mathrm{Pb} 1 — \mathrm{~S} 1^{\text {ii }}$, with a distance of $3.3894(17) \AA$] is shorter than the corresponding sum of the van der Waals radii ($3.80 \AA$) of Pb and S atoms (Bondi, 1964). So the $\mathrm{Pb}^{\mathrm{II}}$ ion in this structure should be described as $(4+2)$ coordinated (Chan et al.,1997; Calatayud et al.,2007; Turner et al., 2008; Pena-Hueso et al., 2008). Under this coordination mode, each ABTC ligand acts as a linear linker to coordinate two metal centers, while each metal ion is linked to four ABTC ligands, then, along the c axis, one-dimensional zigzag chains are formed (Figure 2).

Along the b axis, neighboring chains are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O} H$-bonds and $\pi-\pi$ interactions between the thiazole and benzene rings [with perpendicular distance of $3.4184 \AA$ and centroid-centroid distance of $3.7436 \AA$]. Simultaneously, there is an interaction between the benzene ring and the carboxyl group coordinated on the $\mathrm{Pb}^{\text {II }}$ ion, described by the 4-membered ring

supplementary materials

of $\mathrm{O} 1-\mathrm{C} 8-\mathrm{O} 2-\mathrm{Pb} 1$, with a perpendicular distance of $3.5021 \AA$ and centroid-centroid distance of $3.5740 \AA$ (Sredojević et al.,2010).

Finally, along the a axis, neighboring chains are further connected to each other by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds which complete an infinite three-dimensional framework of the structure (Table 1 and Figure 3).

It is worth noting that S secondary bonds were also present in the previously reported complex of Ag and a benzothiazole derivative (Zou et al., 2004) through the weak interaction between Ag and the S atom of the thiozole ring. Also here these secondary Ag—S bonds play an important role in building the crystal framework, cooperating with the hydrogen bonds and $\pi-\pi$ interactions to build the supramolecular structure.

Experimental

The 2-aminobenzothiazole-6-carboxylic acid ligand was obtained by hydrolyzing ethyl 2-amino-1,3-benzothiazole-6carboxylate (Das et al. 2003). The mixture of lead acetate ($0.0379 \mathrm{~g}, 0.10 \mathrm{mmol}$), 2-aminobenzothiazole-6-carboxylic acid $(0.0194 \mathrm{~g}, 0.1 \mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ was sealed in a 15 ml stainless-steel reactor with Teflon liner and heated $\left(10^{\circ} \mathrm{C}\right.$ per hour) from room temperature to $140^{\circ} \mathrm{C}$ and kept at $140^{\circ} \mathrm{C}$ for 96 h , then cooled to room temperature again at a similar rate. Brown crystals suitable for X-ray diffraction analysis were obtained.

Refinement

All H atoms bound to C and N atoms were located in difference Fourier syntheses and were refined as riding, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and and $\mathrm{N} — \mathrm{H}$ distances of $0.86 \AA$. All $U_{\text {iso }}(\mathrm{H})$ were kept at $1.2 U_{\text {eq }}$ (Host).

Figures

catena-Poly[lead(II)-bis(μ-2-amino-1,3-benzothiazole-6-carboxylato)]

Crystal data

$\left[\mathrm{Pb}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right)_{2}\right]$
$M_{r}=593.59$
Monoclinic, $P 2 / c$
Hall symbol: -P 2yc
$a=10.909$ (2) \AA
$b=4.8271$ (10) \AA
$c=15.980(3) \AA$
$\beta=100.02(3)^{\circ}$
$V=828.6$ (3) \AA^{3}
$Z=2$
$F(000)=560$
$D_{\mathrm{x}}=2.379 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3030 reflections
$\theta=3.5-27.6^{\circ}$
$\mu=10.47 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, brown
$0.39 \times 0.29 \times 0.15 \mathrm{~mm}$

1890 independent reflections
1871 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.075$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.5^{\circ}$
$h=-14 \rightarrow 12$
$k=-6 \rightarrow 6$
$l=-20 \rightarrow 20$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0574 P)^{2}+0.8091 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=2.13$ e \AA^{-3}
$\Delta \rho_{\min }=-2.56$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations

supplementary materials

between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Pb 1	0.5000	$0.46437(5)$	0.7500	$0.02893(13)$
S 1	$0.68171(12)$	$-0.6475(3)$	$0.43591(9)$	$0.0341(3)$
N 1	$0.8579(6)$	$-1.0111(11)$	$0.4062(4)$	$0.0358(12)$
H 1 A	0.9286	-1.0940	0.4177	0.043^{*}
H 1 B	0.8061	-1.0545	0.3611	0.043^{*}
N 2	$0.9003(4)$	$-0.7340(11)$	$0.5281(3)$	$0.0314(10)$
O 1	$0.6764(4)$	$0.1672(12)$	$0.7523(3)$	$0.0456(12)$
O 2	$0.5321(4)$	$0.1587(10)$	$0.6401(3)$	$0.0400(10)$
C 1	$0.8286(5)$	$-0.8158(13)$	$0.4580(3)$	$0.0293(10)$
C 2	$0.7228(6)$	$-0.4520(10)$	$0.5281(4)$	$0.0269(11)$
C 3	$0.6541(5)$	$-0.2540(12)$	$0.5620(3)$	$0.0293(11)$
H 3	0.5754	-0.2021	0.5341	0.035^{*}
C 4	$0.7070(5)$	$-0.1345(12)$	$0.6396(3)$	$0.0303(11)$
C 5	$0.8264(5)$	$-0.2125(15)$	$0.6806(4)$	$0.0382(13)$
H 5	0.8603	-0.1325	0.7324	0.046^{*}
C 6	$0.8940(6)$	$-0.4066(16)$	$0.6445(4)$	$0.0401(14)$
H 6	0.9740	-0.4530	0.6712	0.048^{*}
C 7	$0.8425(6)$	$-0.5332(12)$	$0.5682(4)$	$0.0301(12)$
C 8	$0.6357(6)$	$0.0758(12)$	$0.6796(4)$	$0.0295(11)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pb 1	$0.03445(19)$	$0.02334(18)$	$0.0291(2)$	0.000	$0.00589(12)$	0.000
S 1	$0.0295(6)$	$0.0391(8)$	$0.0308(7)$	$0.0058(6)$	$-0.0030(5)$	$-0.0049(6)$
N 1	$0.033(3)$	$0.042(3)$	$0.030(3)$	$0.005(2)$	$-0.001(2)$	$-0.010(2)$
N 2	$0.0270(19)$	$0.036(3)$	$0.030(2)$	$0.0052(19)$	$0.0017(17)$	$-0.0053(19)$
O 1	$0.052(3)$	$0.055(3)$	$0.028(2)$	$0.021(2)$	$0.0025(18)$	$-0.007(2)$
O 2	$0.034(2)$	$0.042(3)$	$0.042(2)$	$0.0081(19)$	$0.0009(17)$	$-0.013(2)$
C 1	$0.026(2)$	$0.033(3)$	$0.029(2)$	$0.004(2)$	$0.0043(19)$	$0.003(2)$
C 2	$0.028(3)$	$0.027(3)$	$0.025(3)$	$-0.0007(19)$	$0.002(2)$	$0.0008(19)$
C 3	$0.026(2)$	$0.030(3)$	$0.032(3)$	$0.003(2)$	$0.0063(19)$	$0.005(2)$
C 4	$0.032(2)$	$0.028(3)$	$0.032(3)$	$0.005(2)$	$0.009(2)$	$0.000(2)$
C 5	$0.035(3)$	$0.050(4)$	$0.027(3)$	$0.008(3)$	$0.000(2)$	$-0.009(3)$
C 6	$0.032(3)$	$0.050(3)$	$0.034(3)$	$0.012(3)$	$-0.005(2)$	$-0.009(3)$
C 7	$0.029(3)$	$0.032(3)$	$0.029(3)$	$0.005(2)$	$0.004(2)$	$0.001(2)$
C 8	$0.037(3)$	$0.025(2)$	$0.030(3)$	$0.002(2)$	$0.014(2)$	$0.003(2)$

sup-4

Geometric parameters (A, ${ }^{\circ}$)

$\mathrm{Pb} 1-\mathrm{O} 2$	2.366 (4)	N2-C7	1.375 (7)
$\mathrm{Pb} 1-\mathrm{O} 2{ }^{\text {i }}$	2.366 (4)	O1-C8	1.251 (8)
$\mathrm{Pb} 1-\mathrm{O} 1^{\text {i }}$	2.395 (5)	O2-C8	1.259 (8)
$\mathrm{Pb} 1-\mathrm{O} 1$	2.395 (5)	C2-C3	1.382 (8)
$\mathrm{Pb} 1-\mathrm{C} 8$	2.749 (6)	C2-C7	1.406 (8)
$\mathrm{Pb} 1-\mathrm{C} 8^{\text {i }}$	2.749 (6)	C3-C4	1.399 (8)
Pb1-S1 ${ }^{\text {ii }}$	3.3894 (17)	C3-H3	0.9300
$\mathrm{Pb} 1-\mathrm{S} 1^{\text {iii }}$	3.3894 (17)	$\mathrm{C} 4-\mathrm{C} 5$	1.404 (8)
S1-C2	1.741 (6)	C4-C8	1.489 (8)
S1-C1	1.776 (5)	C5-C6	1.378 (9)
N1-C1	1.330 (8)	C5-H5	0.9300
N1-H1A	0.8600	C6-C7	1.392 (9)
N1-H1B	0.8600	C6-H6	0.9300
N2-C1	1.310 (7)		
$\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{O} 2^{\mathrm{i}}$	102.8 (3)	H1A-N1-H1B	120.0
$\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{O} 1^{\mathrm{i}}$	80.64 (17)	C1-N2-C7	110.9 (5)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 1^{\mathrm{i}}$	54.26 (15)	$\mathrm{C} 8-\mathrm{O} 1-\mathrm{Pb} 1$	92.4 (4)
$\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{O} 1$	54.26 (15)	$\mathrm{C} 8-\mathrm{O} 2-\mathrm{Pb} 1$	93.6 (4)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 1$	80.64 (17)	N2-C1-N1	125.0 (5)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 1$	106.4 (3)	N2- $\mathrm{C} 1-\mathrm{S} 1$	114.6 (4)
$\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{C} 8$	27.21 (17)	N1-C1-S1	120.4 (4)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{C} 8$	92.19 (17)	C3-C2-C7	122.5 (5)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{C} 8$	94.21 (19)	C3-C2-S1	129.0 (5)
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{C} 8$	27.04 (17)	C7- $22-\mathrm{S} 1$	108.5 (4)
$\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{C} 8^{\mathrm{i}}$	92.19 (17)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	117.7 (5)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{C} 8^{\mathrm{i}}$	27.21 (17)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	121.2
O1 $1^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{C} 8^{\mathrm{i}}$	27.04 (17)	C4-C3-H3	121.2
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{C} 8^{\mathrm{i}}$	94.21 (19)	C3-C4-C5	120.6 (5)
C8-Pb1-C8 ${ }^{\text {i }}$	93.9 (2)	C3-C4-C8	119.7 (5)
$\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{S} 1^{\text {ii }}$	132.35 (10)	C5-C4-C8	119.7 (5)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Pb} 1-\mathrm{S} 1^{\text {ii }}$	69.61 (11)	C6-C5-C4	120.5 (6)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{Sl}^{\text {ii }}$	121.04 (10)	C6-C5-H5	119.7
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{S} 1^{\text {ii }}$	78.27 (11)	C4-C5-H5	119.7
C8-Pb1-S1 ${ }^{\text {ii }}$	105.21 (14)	C5-C6-C7	120.1 (6)
$\mathrm{C} 8^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{S}^{\text {ii }}$	95.37 (14)	C5-C6-H6	120.0
$\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{S} 1^{\text {iii }}$	69.61 (11)	C7-C6-H6	120.0
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Pb} 1-\mathrm{S} 1^{\text {iii }}$	132.35 (11)	N2-C7-C6	124.8 (6)
O1 ${ }^{\text {i }}$ - $\mathrm{Pb} 1-\mathrm{S} 1^{\text {iii }}$	78.27 (11)	N2-C7-C2	116.7 (6)
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{S} 1^{\mathrm{iii}}$	121.04 (10)	C6-C7-C2	118.6 (6)
C8-Pb1-S1 ${ }^{\text {iii }}$	95.37 (14)	O1-C8-O2	119.7 (5)

supplementary materials

$\mathrm{C}^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{Sl}^{\mathrm{iii}}$	$105.21(14)$	$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 4$	$120.8(6)$
$\mathrm{S} 1^{\mathrm{ii}}-\mathrm{Pb} 1-\mathrm{S}^{\mathrm{iii}}$	$149.76(6)$	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 4$	$119.5(6)$
$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 1$	$89.4(3)$	$\mathrm{O} 1-\mathrm{C} 8-\mathrm{Pb} 1$	$60.5(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	120.0	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{Pb} 1$	$59.2(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	120.0	$\mathrm{C} 4-\mathrm{C} 8-\mathrm{Pb} 1$	$178.7(5)$

Symmetry codes: (i) $-x+1, y,-z+3 / 2$; (ii) $x,-y, z+1 / 2$; (iii) $-x+1,-y,-z+1$.

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O}^{\text {iv }}$	0.86	2.11	$2.973(7)$	179
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{~N} 2^{\mathrm{v}}$	0.86	2.09	$2.934(7)$	168

Symmetry codes: (iv) $x,-y-1, z-1 / 2$; (v) $-x+2,-y-2,-z+1$.

Fig. 1

supplementary materials

Fig. 2

Fig. 3

